Enzymes are widely used in the baking sector. The first basic ingredient of cake is flour. On average, flour contains 82% starch, 12% protein and 3% fibre. Flour also contains natural enzymes in the presence of water. These are involved in the process by which the dough gets its proper consistency. These enzymes include amylases, which produce a substrate for the yeast enzymes that carry out alcoholic fermentation, proteases, which increase the volume of the dough, and xylanases, which increase the elasticity of the dough.
A major part of designing an enzyme system for a customer is to determine where this material is best needed. I think it is safe to say that in most cases it works during the preparation of the dough and perhaps also during the fermentation of the dough. That is when you will chop the small pieces of starch. But it actually only works if you take it out of the oven.
And over time, the larger starch molecules might crystallize or want to be reversed. But the small pieces of starch that you have created in the mixing process are still there and ready to prevent this crystallization. That is correct. The active effect of the enzyme occurs during the production of the dough. But the functionality occurs after baking.
That was one of the challenges in the premature release of the enzymes, because people dont know that something has happened in a ball and a fermentation process and whether it is deactivated. They do not want to activate the enzymes in the product after cooking.
Decades ago, people did not really know how and when to use them. Bakers have had many bad experiences by using either the wrong type of enzyme or too much of it. An extreme example is when you had to put too much amylase in your dough. This amylase would start to break down the starch in all directions. And you could end up with an almost liquid dough. So this is an extreme example of the excessive use of an enzyme. Most amylases available today are designed to be deactivated during baking.
There are many interactions between the different aspects of baking. This also applies to the way enzymes interact with baked goods. If I give you an example, there are several ways to influence volume. One of the enzymes we work with is a class of enzymes called proteases.
And instead of breaking down carbohydrates or starch, as we talked about amylase, the beet enzymes break down the protein, they break down the gluten. So they can weaken the gluten network. So if you have just the right amount of enzymes, you might be able to reduce the tension in the dough and make it rise a little more. So this is one possible approach.
Another approach would be to use an enzyme that produces carbohydrate fragments, so that the yeast can make use of its food and make the yeast more productive by producing more gas. And then you have more pressure to increase the volume. So I think what I am trying to say is that there are a lot of multiple interactions and we try to keep that in mind when we design an enzyme system.
Rarely do we design an enzyme system with one type of enzyme or one enzyme that is measured by trying to affect several functions simultaneously. And it depends very much on the specific application. It depends on the process used by the customer.
Because, you know, you cannot add more yeast, and adding more years is not the solution. So the solution that Aaron Clinton proposed was to add an enzyme to the clote, cut up the carbohydrates and give these foods more nutrition. We may have to turn more knobs than just providing carbohydrate fragments or yeast. We may also have to play with other features to make it a complete success. But yes, the logic you have set out is absolutely correct. It is the kind of thing where you can use an enzyme to solve a problem that you have here
Yes, it is very common for industrial bakers to face difficulties due to fluctuations in their flour supply. And they may have a recipe and a process that is set up in such a way that, for example, we develop a sub-rule that perfectly fills the dependencies of each one, perfectly shaped, in the whole tray. And then a new batch of flour arrives and suddenly the moulds are no longer full and the dough is too firm.
We are able to provide suppliers with formulated tools that allow them to modulate this extensibility to compensate for variations in their incoming flour. Sometimes we do this for a customer, and it only needs to be done once, and he is satisfied with the performance of his dough. In other cases, we have to show a baker how to use this particular tool and he adjusts the amount used when the type of flour changes.
We have ready-to-use products that customers can try to see if this solves their problem. But we are also happy to formulate a specific solution for them to do that. This specific solution means that you dont use the baking enzymes in every production. It would be in production. The dough seems to be more Buckie.
The baking industry has made use of yeasts and enzymes for hundreds of years to manufacture a wide range of high-quality products. It is now well accepted that wheat endogenous enzyme systems and yeast enzymes playa major role in the baking process. Wheat and consequently wheat flour contain a wide range of enzyme activities; these different endogenous activities can vary greatly depending for example, on growing/harvesting and storage conditions. A well-known example is wheat a-amylase. Too high activities render a wheat unfit for bread-making. Conversely, a too low activity results in a sub-optimal product.
Yulin HB™ contains other products and information you need, so please check it out.
Malt is one source of enzymes widely used in the baking industry. It contains a whole range of enzymes including the enzyme diastase, which can be used to compensate for too low endogenous a-amylase levels. Malt is used in breads and rolls to give these products a higher volume, a better color and a softer crumb. These effects are mainly attributed to the enzyme diastase. Malt, however, contains a whole range of enzymes, including proteases and pentosanases. The enzyme profile of malt can vary depending on the variety used and the malting conditions. The main enzyme activities found in these commercial enzyme preparations are starch-degrading enzymes (amylases), proteases and pentosanases.
Amylases
Amylases can be used in three steps of bread-making process: dough mixing, dough fermentation, and baking. Since starch granules are only degraded at a slow rate by a-amylases, damaged starch and solubilised amylose are the main substrates for this enzyme in a dough. The amount of damaged starch can vary, depending on the type of flour and milling conditions. Grists used for bread-making purposes generally contain 5-9% damaged starch. The hydrolysis of damaged starch plays an important role in rheological properties of dough since a considerable amount of water in the dough is bound by damaged starch.
Depending on the types of amylases or glucoamylases used, different amounts of maltose, glucose and dextrins are formed during dough fermentation. Malto and glucose are important for yeast metabolism. Production of maltose by β-amylase in a dough is dependent primarily on the action of α-amylase on damaged starch. Levels of β-amylase are usually sufficient in wheat but levels of α-amylase vary considerably. Production of sufficient quantities of glucose can be achieved by adding a glucoamylase, which is advantageous since glucose is fermented at a higher rate than maltose. Glucoamylases can therefore be used to activate fermentation and to reduce the fermentation time.
In the oven, dough viscosity initially decreases enabling higher enzyme action, and from 56°C onwards, starch gelatinises and becomes highly susceptible to amylolysis. Temperature optima and thermo stability of the enzymes used are therefore of great importance.
Proteases
Small amounts of proteases can have large effects on gluten physical properties. It is demonstrated that cleavage of a few peptide bonds resulted in a rapid decrease in the viscosity of glutenin dispersions. Also, evidence to support the hypothesis that gluten softening is the direct result of peptide bond scission catalysed by proteases has been reported. Extensive softening was observed although very few peptide bonds were broken. Proteases can be used to assure bread dough uniformity and help control bread texture and improve flavor. Alkaline proteases have a rather weak action on gluten. However, the neutral proteases have a very strong action on gluten.
With the increased use of vital wheat gluten as a partial substitute for high-protein, high-quality hard wheats in European bread flours, another application of proteases is possible. Quality variations in gluten pose an important problem and are thought to result from heat damage. The damaged gluten gives a less elastic and stiffer dough and therefore an inferior product. Since heat damage makes the gluten far more susceptible to proteolysis, proteases can be used to alleviate this problem by specifically modifying these damaged structures in a dough.
Pentosanases
Hemicellulases are able to destroy the water-binding capacity of wheat flour pentosanases and release water. This causes dough softening. When this only occurs to a limited extent it may result in an increased volume. This effect can be regarded as quite nonspecific and, in many cases, is not an objective since it is difficult to control compared with other enzyme activities that cause dough softening. In this respect a clear distinction must be made between exo- and endo-xylanases. The use of early enzyme formulations containing exo-xylanases could easily lead to sticky doughs. Endo-1,3-beta-xylosidases have a limited activity on wheat soluble and insoluble pentosans and are less likely to cause an overdose effect. Therefore, these endoxylanases are the preferred enzyme. Another possible effect of pentosanases is that they could offset the negative effects of insoluble pentosans present in the flour.
Reference
Related Services
Industrial Enzyme Production
Related Products
Food and Beverage Applications
Health, Diet, and Nutrition
To discuss more service details, please contact us.