Sometimes two is better than one. Coupling solar energy and storage technologies is one such case. The reason: Solar energy is not always produced at the time energy is needed most. Peak power usage often occurs on summer afternoons and evenings, when solar energy generation is falling. Temperatures can be hottest during these times, and people who work daytime hours get home and begin using electricity to cool their homes, cook, and run appliances.
If you are looking for more details, kindly visit our website.
Storage helps solar contribute to the electricity supply even when the sun isnt shining. It can also help smooth out variations in how solar energy flows on the grid. These variations are attributable to changes in the amount of sunlight that shines onto photovoltaic (PV) panels or concentrating solar-thermal power (CSP) systems. Solar energy production can be affected by season, time of day, clouds, dust, haze, or obstructions like shadows, rain, snow, and dirt. Sometimes energy storage is co-located with, or placed next to, a solar energy system, and sometimes the storage system stands alone, but in either configuration, it can help more effectively integrate solar into the energy landscape.
Storage refers to technologies that can capture electricity, store it as another form of energy (chemical, thermal, mechanical), and then release it for use when it is needed. Lithium-ion batteries are one such technology. Although using energy storage is never 100% efficientsome energy is always lost in converting energy and retrieving itstorage allows the flexible use of energy at different times from when it was generated. So, storage can increase system efficiency and resilience, and it can improve power quality by matching supply and demand.
Storage facilities differ in both energy capacity, which is the total amount of energy that can be stored (usually in kilowatt-hours or megawatt-hours), and power capacity, which is the amount of energy that can be released at a given time (usually in kilowatts or megawatts). Different energy and power capacities of storage can be used to manage different tasks. Short-term storage that lasts just a few minutes will ensure a solar plant operates smoothly during output fluctuations due to passing clouds, while longer-term storage can help provide supply over days or weeks when solar energy production is low or during a major weather event, for example.
The most common type of energy storage in the power grid is pumped hydropower. But the storage technologies most frequently coupled with solar power plants are electrochemical storage (batteries) with PV plants and thermal storage (fluids) with CSP plants. Other types of storage, such as compressed air storage and flywheels, may have different characteristics, such as very fast discharge or very large capacity, that make them attractive to grid operators. More information on other types of storage is below.
Pumped-storage hydropower is an energy storage technology based on water. Electrical energy is used to pump water uphill into a reservoir when energy demand is low. Later, the water can be allowed to flow back downhill and turn a turbine to generate electricity when demand is high. Pumped hydro is a well-tested and mature storage technology that has been used in the United States since . However, it requires suitable landscapes and reservoirs, which may be natural lakes or man-made by constructing dams, requiring lengthy regulatory permits, long implementation times, and large initial capital. Other than energy arbitrage, pumped hydros value of services to integrate variable renewables are not fully realized, which can make the financial payback period long. These are some of the reasons pumped hydro has not been built recently, even though interest is evident from requests to the Federal Energy Regulatory Commission for preliminary permits and licenses.
Many of us are familiar with electrochemical batteries, like those found in laptops and mobile phones. When electricity is fed into a battery, it causes a chemical reaction, and energy is stored. When a battery is discharged, that chemical reaction is reversed, which creates voltage between two electrical contacts, causing current to flow out of the battery. The most common chemistry for battery cells is lithium-ion, but other common options include lead-acid, sodium, and nickel-based batteries.
Thermal energy storage is a family of technologies in which a fluid, such as water or molten salt, or other material is used to store heat. This thermal storage material is then stored in an insulated tank until the energy is needed. The energy may be used directly for heating and cooling, or it can be used to generate electricity. In thermal energy storage systems intended for electricity, the heat is used to boil water. The resulting steam drives a turbine and produces electrical power using the same equipment that is used in conventional electricity generating stations. Thermal energy storage is useful in CSP plants, which focus sunlight onto a receiver to heat a working fluid. Supercritical carbon dioxide is being explored as a working fluid that could take advantage of higher temperatures and reduce the size of generating plants.
A flywheel is a heavy wheel attached to a rotating shaft. Expending energy can make the wheel turn faster. This energy can be extracted by attaching the wheel to an electrical generator, which uses electromagnetism to slow the wheel down and produce electricity. Although flywheels can quickly provide power, they cant store a lot of energy.
Compressed air storage systems consist of large vessels, like tanks, or natural formations, like caves. A compressor system pumps the vessels full of pressurized air. Then the air can be released and used to drive a turbine that produces electricity. Existing compressed air energy storage systems often use the released air as part of a natural gas power cycle to produce electricity.
Solar power can be used to create new fuels that can be combusted (burned) or consumed to provide energy, effectively storing the solar energy in the chemical bonds. Among the possible fuels researchers are examining are hydrogen, produced by separating it from the oxygen in water, and methane, produced by combining hydrogen and carbon dioxide. Methane is the main component of natural gas, which is commonly used to produce electricity or heat homes.
Energy can also be stored by changing how we use the devices we already have. For example, by heating or cooling a building before an anticipated peak of electrical demand, the building can store that thermal energy so it doesnt need to consume electricity later in the day. The building itself is acting as a thermos by storing cool or warm air. A similar process can be applied to water heaters to spread demand out over the day.
Ultimately, residential and commercial solar customers, and utilities and large-scale solar operators alike, can benefit from solar-plus-storage systems. As research continues and the costs of solar energy and storage come down, solar and storage solutions will become more accessible to all Americans.
Learn more about solar offices systems integration program.
Learn about DOEs Energy Storage Grand Challenge.
Sign up for our newsletter to keep up to date with the latest news.
Home » Solar Information Resources » Systems Integration Basics
With competitive price and timely delivery, JM sincerely hope to be your supplier and partner.
Fossil fuel remains a resource in declining supply that, when burned to create energy, releases harmful byproducts into our atmosphere. Solar power has the potential to help us minimize our use of fossil fuels and the impact we have on the environment.
Solar energy can help most consumers power their homes as an alternative or supplement to purchasing electricity from a grid. With power prices on the rise, consumers stand to save a considerable amount on monthly power bills by switching to solar.
A home reliant entirely on solar power features the capacity to function entirely off-grid, especially when supplemented with a solar battery system to maintain power during non-daylight hours. These battery systems can also turn solar systems into emergency backups during power outages.
According to the National Renewable Energy Laboratory, every dollar a solar panel saves you on your electrical bills increases the value of your home by $20. Also, homes with solar panels sell for four percent higher than those without them. If a home has solar panels, its owners will be saving money in the long run, increasing its appeal and value.
The start-up costs for a solar system represent a significant expense, but the costs are usually mitigated by savings on the electric bill. Consumers can often break even on the investmentusually within six to 10 yearsand then start reaping the benefits well before the system needs replacement or considerable maintenance.
Once installed, a solar system requires little maintenance as long as it remains unaffected by environmental factors. If panels are kept clean and free of debris, they should continue to function without any additional action by the consumer for many years.
Regarding maintenance, professional service for your panels can cost between $140 to $180, while an annual inspection or cleaning can cost about $150. However, solar panel warranties typically cover them with performance guarantees.
A process known as net metering allows consumers to sell excess electricity their panels produce back to the utility company, further reducing utility bills. This often reduces a communitys reliance on fossil fuels, as well.
Solar energy is extremely versatile, and can provide power not only to our homes and appliances but to places where channeling power from a grid is impractical or impossible, such as remote, off-grid regions, satellites and boats.
The price of electricity has been on the rise for the past ten years and remains unlikely to decrease in the near future. Solar power can help the consumer keep bills low and with net metering, many consumers can even sell extra energy back to the utility company to turn rising electricity prices to their advantage.
Technology has improved tremendously since the early days of solar power and advancements continue to be made every day. Better yet, despite these advancements, solars ubiquity appears to have driven its cost down, making solar more accessible to more consumers. Many state incentive programs and a federal tax credit can also help consumers minimize the out-of-pocket amount they spend on a new solar system.
Advertisement
Compare Quotes From Top-rated Solar Panel Installers
Select a State To Get Started With Your No Commitment, Free Estimate
For more Solar Integrated Solutionsinformation, please contact us. We will provide professional answers.
Find a Solar Panel Installer